7. References

[1]

Shijie Zhong, David A. Yuen, Louis N. Moresi, and G. Schubert. Numerical methods for mantle convection. Treatise on geophysics, 7:227–252, 2007.

[2]

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.

[3]

Jean Braun. Pecube: a new finite-element code to solve the 3d heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers & Geosciences, 29(6):787–794, 2003.

[4]

C Thieulot. Elefant: a user-friendly multipurpose geodynamics code. Solid Earth Discussions, 6(2):1949–2096, 2014.

[5]

Paul J Tackley and Scott D King. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochemistry, Geophysics, Geosystems, 2003.

[6]

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2000.

[7]

Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element method, vol. 2. Butterworth-Heinemann, 2000.

[8]

Thomas JR Hughes. A multidimentional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, AMD 34, 1979.

[9]

Thomas JR Hughes. A theoretical framework for petrov-galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. Finite element in fluids, 4:Chapter–3, 1982.

[10]

Boris JP Kaus, Hans Mühlhaus, and Dave A May. A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 181(1-2):12–20, 2010.

[11]

Louis Moresi and Viatcheslav Solomatov. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the earth and venus. Geophysical Journal International, 133(3):669–682, 1998.

[12]

James D Byerlee. Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14):4741–4750, 1968.

[13]

Daniel Charles Drucker and William Prager. Soil mechanics and plastic analysis or limit design. Quarterly of applied mathematics, 10(2):157–165, 1952.

[14]

Viatcheslav S Solomatov and L-N Moresi. Scaling of time-dependent stagnant lid convection: application to small-scale convection on earth and other terrestrial planets. Journal of Geophysical Research: Solid Earth, 105(B9):21795–21817, 2000.

[15]

Victor Sacek. Post-rift influence of small-scale convection on the landscape evolution at divergent continental margins. Earth and Planetary Science Letters, 459:48–57, 2017.

[16]

Shun-ichiro Karato and Patrick Wu. Rheology of the upper mantle: a synthesis. Science, 260(5109):771–778, 1993.

[17]

Gayle C Gleason and Jan Tullis. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1-4):1–23, 1995.

[18]

Taras Gerya. Introduction to numerical geodynamic modelling. Cambridge University Press, 2019.

[19]

Claudio A. Salazar-Mora, Ritske S. Huismans, Haakon Fossen, and Marcos Egydio-Silva. The wilson cycle and effects of tectonic structural inheritance on rifted passive margin formation. Tectonics, 37(9):3085–3101, 2018.

[20]

PE Van Keken, SD King, H Schmeling, UR Christensen, D Neumeister, and M-P Doin. A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research: Solid Earth, 102(B10):22477–22495, 1997.

[21]

F Crameri, H Schmeling, GJ Golabek, T Duretz, R Orendt, SJH Buiter, DA May, BJP Kaus, TV Gerya, and PJ Tackley. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’method. Geophysical Journal International, 189(1):38–54, 2012.

[22]

Louis Moresi, Frédéric Dufour, and H-B Mühlhaus. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of computational physics, 184(2):476–497, 2003.

[23]

Paul J Tackley. Effects of strongly temperature-dependent viscosity on time-dependent, three-dimensional models of mantle convection. Geophysical Research Letters, 20(20):2187–2190, 1993.

[24]

Taras V Gerya and David A Yuen. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4):293–318, 2003.

[25]

Cédric Thieulot, Philippe Fullsack, and Jean Braun. Adaptive octree-based finite element analysis of two-and three-dimensional indentation problems. Journal of Geophysical Research: Solid Earth, 2008.

[26]

Stefan M Schmalholz. A simple analytical solution for slab detachment. Earth and Planetary Science Letters, 304(1-2):45–54, 2011.

[27]

Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman. Nonlinear viscoplasticity in aspect: benchmarking and applications to subduction. Solid Earth, 9(2):267–294, 2018.